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Abstract: The search for new fiber supplements that can claim to be “prebiotic” is expanding fast, as
the role of prebiotics and intestinal microbiota in well-being has been well established. This work
explored the prebiotic potential of a novel fiber plus D-Limonene supplement (FLS) in comparison
to fructooligosaccharides (FOS) over distal colonic fermentation with the in vitro model MICODE
(multi-unit in vitro colon gut model). During fermentation, volatilome characterization and core
microbiota quantifications were performed, then correlations among volatiles and microbes were
interpreted. The results indicated that FLS generated positive effects on the host gut model, determin-
ing: (i) eubiosis; (ii) increased abundance of beneficial bacteria, as Bifidobacteriaceae; (iii) production of
beneficial compounds, as n-Decanoic acid; (iv) reduction in detrimental bacteria, as Enterobaceteriaceae;
(v) reduction in detrimental compounds, as skatole. The approach that we followed permitted us to
describe the prebiotic potential of FLS and its ability to steadily maintain the metabolism of colon
microbiota over time. This aspect is two-faced and should be investigated further because if a fast
microbial turnover and production of beneficial compounds is a hallmark of a prebiotic, the ability
to reduce microbiota changes and to reduce imbalances in the productions of microbial metabolites
could be an added value to FLS. In fact, it has been recently demonstrated that these aspects could
serve as an adjuvant in metabolic disorders and cognitive decline.

Keywords: FOS; core microbiota; terpenes; Volatile Organic Compounds (VOCs); prebiotic index;
cocoa; n-Decanoic acid

1. Introduction

The active role of the intestinal microbiota in human physiology is widely recognized,
and its importance grows rapidly in the scientific literature. In the same way, it has been
demonstrated that intestinal dysbiosis, characterized by low microbial diversity, has a
role in the development and maintenance of most diseases. This bacterial unbalance is
able to trigger low-grade chronic inflammation that impacts gut integrity and disease
development [1]. Different human diseases have been associated with intestinal dysbiosis,
including autoimmune disorders, such as thyroiditis [2,3], metabolic disorders, such as
obesity and type II diabetes [4,5], and neurological disorders, such as Parkinson [6] and
Alzheimer’s disease [7]. In this context, an increasing number of probiotics and prebiotics
have been developed in order to modulate the intestinal microbiota, often with the main
purpose of relieving GI symptoms such as diarrhea, constipation, and bloating [8] as side
effects of the aforementioned diseases.
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The action of a prebiotic on the colon microbiota is a complex phenomenon, and for
its comprehension, a complex experimental model capable of considering many different
parameters of the ecology of colon microbiota is necessary. In particular, the study of
certain bacterial taxa and that of healthy compounds derived from fiber degradation,
namely short-chain fatty acids (SCFAs) [9] or medium-chain fatty acids (MCFAs) [10],
or harmful ones derived from proteolytic fermentation, namely Indole, skatole [11], and
branched-chain fatty acids (BCFAs) [12] may represent a robust strategy. The presence
of these compounds derived from fiber degradation by colon microbiota should tell if
the fiber evaluated fosters those beneficial bacterial groups involved in fiber fermentation
rather than those involved in harmful proteolytic fermentation. To conduct such studies,
in vitro gut models are considered the gold standard because they can rapidly explain
the impact of food or prebiotics on the human gut microbiota, focusing on the shift of the
core microbial groups and on that of selected species as well as on changes of microbial
metabolites [13].

Among natural bio-actives, essential oils (EOs) from aromatic plants and their main
components such as Limonene, Thymol, Piperine, Cinnamaldehyde, and Eugenol have
been studied for their antimicrobic and bacteriostatic activities and have been shown to be
able to modify intestinal microbiota [14]. Specifically, orange EO and its most represented
component, D-Limonene, were tested in preclinical experiments in mice with promising
results on the modulation of gut microbiota [15]. In obesity-related disorders, orange
EO showed promising preclinical data since it was able to reduce body-weight gain [16],
confirming D-Limonene as the active component of the oil. The same molecule efficiently
reduced insulin resistance and liver damage in obese rats [17] and counteracted dyslipi-
demia and hyperglycemia induced by a high-fat diet (HFD) [18]. Of particular interest,
on the gut microbiota of obese rats, the capability of orange EO to foster Bifidobacterium
was associated with anti-obesity proprieties. In this study, D-Limonene, which is gener-
ally recognized as safe and used in foods as a flavoring agent, was titrated at more than
97% [16]. Although the amounts necessary to produce beneficial effects in the host could
be relevant, there are data on humans regarding the safety of chronic use of high doses of
D-Limonene [19]. To avoid any toxic effects from absorption of the EO in the gut and raise
its effect on gut microbiota, we formulated fiber plus D-Limonene supplement (FLS), a
prebiotic mixture based on D-Limonene adsorbed on cocoa fiber.

In this work, to study the potential prebiotic effect of FLS, we adopted MICODE, an
in vitro gut model of the distal colon, to mimic the effect of human colon fermentation.
MICODE was previously introduced [20], describing several quality controls related to
microbiota and the volatilome used to validate the stability of the system. MICODE is
able to maintain the original diversity, rarity, and richness of the human colon microbiota
from the stool donation over the fermentation period, including upholding some Archea
and more than 400 different OTUs [20]. In line with the latest definition of prebiotics [21],
the use of an in vitro colon model sets the basis to study the prebiotic potential of foods
while, at the same time, assessing the principal bacterial taxa and the volatilome [13].
The study of the volatilome generated during colonic fermentation of fiber is another
fundamental aspect to study the prebiotic potential of a particular food or fiber because it
can describe hundreds of compounds, including those derived from microbial metabolism
(organic acids), and those transformed by the microbiota (bioactives) [20,21]. In particular,
in the present work, the most important bacterial taxa and their metabolites were studied
by a qPCR and SPME-GC-MS, respectively. We have selected those taxa related to fiber
degradation and prebiotic activity, e.g., Bifidobacteriaceae, as well as opportunistic taxa
that should be contained by the effect of the D-Limonene, e.g., Enterobacteriaceae. These
taxa and their shifts were analyzed based on absolute quantifications, also assaying the
prebiotic index. The changes of the volatilome and the principal compounds are related
to the prebiotic effect. Lastly, correlations among metabolites and bacterial taxa were also
considered to better explain the interactive effects on prebiotic potential activity.
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2. Materials and Methods
2.1. Composition of FLS

FLS was provided by TGD Srl (Bologna, Italy). It was prepared by adsorbing pure
D-limonene (>97%, Merck, Kenilworth, NJ, USA) on cocoa fiber. FLS does not contain
any other ingredients or additives besides cocoa fiber and D-limonene. The final con-
centration of D-Limonene in FLS was 14%. This food supplement has been patented
(Patent application EP 3097921) and registered with the commercial names Limenorm®

and ThangeComplex®. The analysis of its alimentary fiber content and composition was
conducted by a certified external laboratory (Meriux Nutrisciences, Chelab Srl, Resana,
Italy) with the official method AOAC 991.43 1994. FLS has a content of Total Alimentary
Fiber of 54.0 ± 5.7 (g/100 g), composed of 43.1 ± 4.5 (g/100 g) of insoluble part and
10.9 ± 1.2 (g/100 g) of soluble part.

2.2. Fecal Donors

Fecal donations were obtained from three healthy donors, two females and one male
aged between 30 and 45 y [12,21–23]. Donors did not undergo antibiotic treatment for at
least 3 months prior to stool collection, did not intentionally consume pre- or probiotic
supplements before the experiment, and had no history of bowel disorders. Additionally,
the donors were normal weight, not smokers, not chronically consuming any drug, and
not alcoholic drink consumers. Fecal samples were donated two times (between seven
days) for the two biological replicas [12,21–23]. The three healthy donors were told of the
study’s aims and procedures and gave their verbal consent for their fecal matter to be used
for the experiments, in agreement with the ethics procedures required at the University of
Bologna.

2.3. Materials

Chemicals for in vitro colonic fermentation were of the highest analytical grade and
were purchased from Oxoid (Thermo Fisher Scientific, Waltham, MA, USA), Sigma-Aldrich
(St. Louis, MO, USA), and Carlo Erba Reagents (Val de Reuil Cedex, France), unless
otherwise stated. Reagents for molecular biology (PCR and qPCR) as well as kits for
DNA extraction and genetic standards purifications were purchased from Thermo Fisher
Scientific (USA).

2.4. Fecal Batch-Culture Fermentation and Samples Collection

Colonic fermentations were conducted for 24 h in independent vessels on 1% (w/v) of
FLS, on 1% (w/v) of fructooligosaccharides (FOS) from chicory (positive control), and on a
blank substrate (blank control), using an in vitro gut model, MICODE (Multi-Unit in vitro
Colon Model), obtained by the assembly of Minibio Reactors (Applikon Biotechnology
BV, Delft, The Netherlands) and controlled by Lucullus PIMS software (Applikon Biotech-
nology). Bioreactors were autoclaved at 121 ◦C and 100 KPa for 15 min and, once cooled
aseptically, filled with 90 mL of anaerobic pre-sterilized basal nutrient medium according
to previous publications [22]. Basal medium (BM) contained (per liter): 2 g peptone, 2 g
yeast extract, 0.1 g NaCl, 0.04 g K2HPO4, 0.04 g KH2PO4, 0.01 g MgSO4·7H2O, 0.01 g
CaCl2·6H2O, 2 g NaHCO3, 2 mL Tween 80, 0.05 g Hemin dissolved in 1 mL of 4 M-NaOH,
10 mL vitamin K, 0.5 g L-cysteine HCl, and 0.5 g bile salts (sodium glycocholate and sodium
taurocholate). The medium was adjusted to pH 7.0 before autoclaving, and 2 mL of 0.025%
(w/v) resazurin solution were added once the media was cooled. Fermentation vessels
were filled aseptically with 90 mL of BM, and the bioreactor head plates were mounted on
previously sterilized and calibrated sensors, i.e., pH and DO2 (Dissolved Oxygen) sensors.
Anaerobic condition (0.0–0.1% w/v of DO2) in each bioreactor was obtained in about 30 min
flushing with filtered O2-free N2 through the mounted-in sparger of Minibio reactors
(Applikon Biotechnology) and was constantly kept over the experiment. The temperature
was set at 37 ◦C and stirred at 300 rpm, while pH was adjusted to 6.75 and maintained
throughout the experiment with the automatic addition of filtered NaOH or HCI (0.5 M) to
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mimic the conditions located in the distal region of the human large intestine. Once the
exact environmental settings were reached, the three vessels were aseptically injected with
10 mL of fecal slurry (10% w/v of human feces) to a final concentration of 1% (w/v) and then
two independently with 1 g of FLS or FOS for a final concentration of 1% (w/v) [23], while
the third vessel was set as a blank control (BC) with no additives (basal medium and 1%
fecal slurry only). Fresh human fecal samples were collected in an anaerobic jar, maintained
at 4 ◦C and processed within 1 h. The fecal slurry was prepared by homogenizing 6 g of
feces (2 g of each donation) in 54 mL of pre-reduced phosphate-buffered saline (PBS) [12].
Batch cultures were run under these controlled conditions for a period of 26.26 h, during
which samples were collected at 4 time points. Sampling was performed with a dedicated
double syringe filtered system (Applikon Biotechnology) connected to a float drawing
from the bottom of the vessels without perturbing or interacting with the bioreactor’s
ecosystem [20]. To guarantee a close control, monitoring and recording of fermentation
parameters, the software Lucullus 3.1 (PIMS, Applikon Biotechnology) was used. This also
allowed to keep the stability of all settings during the experiment. Fermentations were
conducted in two independent experiments, using for each a new pool of feces from the
same three healthy donors.

2.5. Pipeline of Experimental Activities

Parallel and independent vessels for FOS, FLS, and BC were run for 24 h after the
adaptation of the fecal inoculum, defined as the baseline (BL). BL was defined on the
first pH changes detected by Lucullus (1 read/10 s) via the pH Sensors of MICODE. For
this work, the BL was set after 2.26 ± 0.15 h. The entire experiment consisted of 24 cases
(n = 24), including 3 theses (FOS, FLS, and BC) and 4 time points (BL, 6 h, 18 h, and
24 h) in duplicate. Samples of the different time points were used for qPCR and SPME
GC-MS analyses. After sterile sampling of 5 mL of bioreactor contents, samples were
centrifuged at 16,000× g for 7 min to separate the pellets and the supernatants, which
were used for bacterial DNA extraction and SPME-GC-MS analysis. Specifically, microbial
DNA extraction was conducted just after sampling so as not to reduce Firmicutes content.
Sampling from DNA samples and SPME-GC-MS samples were then stored at −80 ◦C.
Technical replicas of analyses were conducted in duplicate for SPME GC-MS (n = 48) and
in triplicate for qPCR (n = 72), both from two independent experiments. Statistical analyses
are also reported later in detail.

2.6. Volatilome Analyses by Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry
(SPME-GC-MS)

The volatilome of a sample consists of the whole profile of its volatile organic com-
pounds (VOCs), whose evaluation was conducted on an Agilent 7890A Gas Chromatograph
(Agilent Technologies, Santa Clara, CA, USA) coupled to an Agilent Technologies 5975
mass spectrometer operating in the electron impact mode (ionization voltage of 70 eV)
equipped with a Chrompack CP-Wax 52 CB capillary column (50 m length, 0.32 mm
ID) (Chrompack, Middelburg, The Netherlands). The SPME GC-MS (Solid Phase Micro-
Extraction Gas Chromatography-Mass Spectrometry) protocol and the identification of
volatile compounds were done accordingly to previous reports, with minor modifica-
tions [21,24]. Briefly, bioreactor samples were centrifuged at 16,000× g for 7 min in order
to collect the supernatants. A volume of 3 mL of supernatant was placed into 10-mL
glass vials and added with 10 µL of 10,000 ppm of 2-Pentanol, 4-methyl (final concen-
tration, 4 mg/L), as the internal standard. Samples were then equilibrated for 10 min at
45 ◦C. SPME fiber coated with carboxen-polydimethylsiloxane (85 µm) was exposed to
each sample for 40 min. Preconditioning, absorption, and desorption phases of SPME
GC-MS analysis and all data processing procedures were conducted according to previous
publications [21,24]. Briefly, before each headspace sampling, the fiber was exposed to
the GC inlet for 10 min for thermal desorption at 250 ◦C in a blank sample. The samples
were then equilibrated for 10 min at 40 ◦C. The SPME fiber was exposed to each sample
for 40 min and finally the fiber was inserted into the injection port of the GC for a 10 min
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sample desorption. The temperature program was: 50 ◦C for 1 min, then programmed at
1.5 ◦C/min to 65 ◦C, and finally at 3.5 ◦C/min to 220 ◦C, which was maintained for 25 min.
Injector, interface, and ion source temperatures were 250, 250, and 230 ◦C, respectively.
Injections were conducted in split-less mode, and helium (3 mL/min) was used as carrier
gas. Identification of molecules was conducted by searching mass spectra in the available
databases (NIST 11 MSMS library and the NIST MS Search program 2.0 (NIST, Gaithers-
burg, MD, USA). Each VOC was quantified in percentage. Besides, in samples prior to
in vitro colonic fermentation (baseline) (Table S1), the main microbial VOCs related to the
prebiotic activity (preVOCs) were also absolutely quantified in mg/kg, and in this respect,
the changes over time were calculated. All results were expressed as normalized mean
values obtained from duplicates in two independent experiments.

2.7. Enumeration of Bacterial Groups with Quantitative Polymerase Chain Reaction (qPCR)

DNA was extracted from each sample at the baseline and at the different time points
using the Purelink Microbiome DNA Purification Kit (Invitrogen, Thermo Fisher Scientific,
Carlsbad, CA, USA) soon after sampling. Nucleic acid purity was evaluated on BioDrop
Spectrophotometer (Biochrom Ltd., Cambridge, UK). Changes in Eubacteria kingdom, Fir-
micutes and Bacteroidetes phyla, Lactobacillales order, Bifidobacteriaceae and Enterobacteriaceae
families, Clostridium group I and Clostridium group IV, and Escherichia coli, Faecalibacterium
prausnitzii, and Akkermansia muciniphila species were also assessed by qPCR targeting a
small fragment of mono copies or multi copies genes by degenerated or specific MALDI
grade primers pairs and high-fidelity DNA polymerase (Invitrogen Platinum SuperFi II
DNA Polymerase, Thermo Fisher Scientific, USA) (Table S2). qPCR analyses were per-
formed on a RotorGene 6000 (Qiagen, Hilden, Germany) with the SYBR Green I chemistry.
Genetic standards were prepared from relative PCR amplicons of the target bacterial
species, using a GeneJet Genomic DNA purification kit (Thermo Fisher Scientific, USA)
as described previously [21,25–27]. For each of the targets, qPCR reactions were set as
follows: a holding stage at 98 ◦C for 6 min, and a cycling stage of 95 ◦C for 20 s and 60 ◦C
for 60 s, repeated 45 times, followed by melting curves analysis. Quantifications were made
with five-points standards of the given amplicon separately. Reactions were prepared with
1 ng of DNA, 2x Power up SYBR Green (Thermo Fisher Scientific, USA) and 250 nM of
each MALDI grade primers (Eurofins Genomics, Ebersberg, Germany). Details of primers
pairs for PCR and qPCR, as well as qPCR performances, are supplied as Supplementary
Materials (Table S2). All results were expressed as mean values obtained from triplicates
from two independent experiments.

2.8. Prebiotic Index

The Prebiotic Index was revised from the original equation elaborated by Palfra-
man [28], introducing substitution on bacterial taxa, the molecular approach based on
quicker qPCR, data normalization, sextuplicate values, and significant differences. Analo-
gously to the original method, an equation based on quantification values expressed as
Log10 cell/mL are similar to the conditions applied in fermentation (24 h controlled batch
with 1% w/v of prebiotic fiber). In this work we introduce the qPI (qPCR Prebiotic Index)
based on qPCR data and this equation: qPI = (Bifidobacteriaceae/Eubacteria) − (Enterobacte-
riaceae/Eubacteria) + (Lactobacillales/Eubacteria) − (Clostridium group I/Eubacteria).

2.9. Data Processing and Statistical Analysis

For the volatilome, one-way ANOVA (p < 0.05) was used to determine significant
VOCs in the dataset. The dataset included 9456 interactions generated between 197 de-
pendent variables (VOCs) and 48 independent variables (2 technical and 2 experimental
replicas of 3 different fermentation treatments, FLS, FOS, BC (blank control), and 4 different
time points, BL, 6 h, 18 h, and 24 h). The significant VOCs (n = 113) were divided into three
groups and analyzed differently: (i) the prebiotic-related VOCs (preVOCs), (ii) the alkenes,
(iii) the remaining volatiles. The analyses conducted were: Principal Component Analysis
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(PCA) to distribute the results on a plane, Multivariate ANOVA (MANOVA) to address
specific contributes by categorical predictors, Tukey’s HSD test for post hoc comparison.
For the core microbiota, the dataset was made by 12 dependent (bacterial taxa and F/B)
and 72 independent variables (3 technical and 2 experimental replicas of 3 different fer-
mentation treatments, FLS, FOS, and BC, and 4 different time points, BL, 6 h, 18 h, and
24 h). It was processed for post hoc comparison by Tukey’s HSD test (p > 0.05), as well as for
the normalized dataset of qPI values. To address specific correlations among bacteria and
molecules (preVOCs), two independent datasets were merged and computed by Spearman
Rank analysis and visualized with a two-way joining heatmap, including Pearson dendro-
grams with complete linkage. The baselines of values (BL) for the volatilome and the core
microbiota were obtained from the fecal slurry diluted in PBS, and the BM with the 1%
(w/v) of substrates (FLS and FOS) after adaptation in the bioreactors and was expressed as
the mean of three samples [20]. Normalization of datasets was performed with the mean
centering method. Statistics and graphics were made with Statistica v.8.0 (Tibco, Palo Alto,
CA, USA), but the two-way joining heatmap graphic was performed with Expression tool
on www.heatmapper.ca (accessed on 19 July 2021).

3. Results and Discussion
3.1. Quality Controls for the Validation of MICODE

To validate the MICODE in vitro model in the version of a fecal batch of the human
distal colon, we choose to monitor and check some parameters as quality controls [21,29],
other than the trends of the experimental conditions that were plotted over the experiments
by Lucullus 3.1 (Applikon Biotechnology BV, Delft, The Netherlands). Quality controls were
both related to metabolites and microbes at the end of fermentations and in comparison to
BL. Specifically, (i) the Firmicutes to Bacteroidetes ratio (F/B), which is related to health and
disease [30], was maintained low, confirming the capacity to simulate throughout the 24 h a
healthy in vivo condition. (ii) The paradigm of prebiotics was confirmed. In fact, a surge in
beneficial bacteria and SCFAs while a minimal depletion of enteropathogens was recorded
when FOS was applied on MICODE. (iii) Each SPME GC-MS analysis had quantified
some stool-related compounds (Thiourea, 1-Propanol, and Butylated hydroxy toluene) that
ranged the complete chromatogram and were adsorbed at the same retention times.

3.2. Volatilome Analysis through SPME GC-MS

Through SPME GC-MS, among 24 duplicated cases (n = 48), 197 molecules were
identified with more than 80% of similarity with the two mentioned databases. On average,
89 were relatively quantified at the baseline, while 90, 97, and 124 during the 24 h of the
experiments at different time points, for BC, FOS, and FLS, respectively. 113 VOCs resulted
significant by ANOVA (p < 0.05), which we used to describe the volatilome (Figure S1).
These VOCs were sorted for the chemical class, and the sums of each class were studied
as changes in respect to the baseline (Figure 1). The datasets of preVOCs (n = 14), such as
SCFAs (n = 3), MCFAs (n = 6), BCFAs (n = 3), and indoles (n = 2) were super-normalized and
discussed as shifts over time points (Figures 2 and 3) in respect to absolutely quantified BL
values (Table S1). All other VOCs sorted by chemical class, i.e., aldehydes (n = 8), ketones
(n = 22), alcohols (n = 17), phenolics and sulphurates (n = 17), and alkenes (n = 30), were
submitted to multivariate analyses, such as untargeted PCA (Figures 4 and 5) and targeted
MANOVA (Tables S3 and S4). Five minor compounds were cast out. Super-normalization
of the dataset was essential to unveil the effect of those compounds that are less volatile
than others and could be underrepresented, as well as to avoid comparing one chemical
class to another [31].
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The bigger plots show changes over gathered time points, while the smaller plots show changes after specific time points,
including tendency lines. The baseline absolute quantifications in mg/kg are found in the Supplementary Materials
(Table S1). Changes were recorded over and after 24 h of in vitro batch human colonic fermentations with 1% (w/v) FOS
and FLS. Samples were analyzed in duplicate from two independent experiments (n = 4). Boxes = mean; Rectangles = mean
± S.D.; Whiskers = Non outlier range. Cases with different Greek letters, numbers, or symbols among a single dependent
variable are significantly different by Tukey’s HSD test (p < 0.05). (A) Shifts of Short Chain Fatty Acids (SCFAs) during
the fermentation time; (B) Shifts of SCFAs with FOS by time points; (C) Shifts of SCFAs with FLS by time points. Acetic
acid (p = 0.0047); Propanoic acid (p = 0.0226); Butanoic acid (p = 0.0455). (D) Shifts of Medium Chain fatty Acids (MCFAs)
during the fermentation time; (E) Shifts of MCFAs with FOS by time points; (F) Shifts of MCFAs with FLS by time points.
Pentanoic acid (p = 0.0428); Hexanoic acid (p = 0.0016); Heptanoic acid (p = 0.0043); Octanoic acid (p = 0.0440); Nonanoic
acid (p = 0.0073); n-Decanoic acid (p = 0.0093).
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Figure 3. Changes in main microbial metabolites related to prebiotic activity expressed as a normalized scale from relative
abundances in respect to the baseline value (BL = 0.0). FOS = Fructooligosaccharides; FLS = tested fiber; BC = Blank
control. The bigger plots show changes over gathered time points, while the smaller plots show changes after specific time
points, including tendency lines. The baseline absolute quantifications in mg/kg are found in the Supplementary Materials
(Table S1). Changes were recorded over and after 24 h of in vitro batch human colonic fermentations with 1% (w/v) FOS
and FLS. Samples were analyzed in duplicate from two independent experiments (n = 4). Boxes = mean; rectangles = mean
± S.D.; whiskers = non outlier range. Cases with different Greek letters, numbers, or symbols among a single dependent
variable are significantly different by Tukey’s HSD test (p < 0.05). (A) Shifts of Branched Chain Fatty Acids (BCFAs) during
the fermentation time; (B) Shifts of BCFAs with FOS by time points; (C) Shifts of BCFAs with FLS by time points. Propanoic,
3-methyl acid (p < 0.0011); Butanoic, 3-methyl acid (p < 0.0012); Pentanoic, 3-methyl acid (p < 0.0474). (D) Shifts of indoles
during the fermentation time; (E) Shifts of indoles with FOS by time points; (F) Shifts of indoles with FLS by time points.
Indole (p < 0.0330); 1H-Indole, 3-methyl (p < 0.0007).
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Figure 4. Changes PCAs of the volatilome sorted by chemical classes of significant (ANOVA p < 0.05) VOCs, including
7 duplicated cases (n = 14), as FOS and FLS fermentations at three different time points (6 h, 18 h, and 24 h) and the baseline
(BL). (A) = Aldehydes; (B) = Alcohols; (C) = Ketones; (D) = Others (phenolics, sulphurates, amines). FOS = Fructooligosac-
charides; FLS = tested fiber; BC = Blank control. Values were recorded over and after 24 h of in vitro batch human colonic
fermentations with 1% (w/v) FOS and FLS. Samples were analyzed in duplicate from two independent experiments (n = 4).
Left-side diagrams are for PCAs of cases, while right-side diagrams are for PCAs of variables. In the PCAs of variables, the
variables with different font colours are the principal descriptors of FLS (orange) and FOS (blue).
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Figure 5. PCAs of the volatilome sorted by alkenes chemical classes of significant (ANOVA p < 0.05) VOCs, including just
FLS cases (with technical replicas, n = 4) and three different time points. Values were recorded over and after 24 h of in vitro
batch human colonic fermentations with 1% (w/v) FLS. (A) PCA of cases; (B) PCA of variables. In (B), the variables with
different font colors are the principal descriptors of FLS cases (pale red = FLS 6 h, red = FLS 18 h, dark red = FLS 24 h).

3.2.1. Changes of Summarized Chemical Classes of VOCs

The 113 significant VOCs were presented as a quantification heatmap (Figure S1) for
BC, FOS, and FLS cases and the BL. By Pearson dendrograms, these cases were clustered in
three groups: (i) the BL and the BC samples; (ii) FLS early and intermediate time points;
(iii) any FOS time points and FLS at the end point. Afterwards, these 113 VOCs were
sorted by chemical class, and the sums of VOCs for each class were measured at the end
point in respect to BL (Figure 1). No differences were detected for BC samples in respect
to BL (p < 0.05). Significant changes were observed for FOS and FLS fermentations in
respect to BL, in particular: (i) phenolics and sulphurates (others), whose abundances were
reduced over time for the 28% and 54% by fermentations with FOS and FLS, respectively;
(ii) organic acids, that have increased of 5% and 8% by fermentations with FOS and FLS,
respectively; (iii) alkenes, that have increased largely just by fermentation with FLS (37%);
(iv) ketones, that have increased either by fermentations with FOS or FLS; (v) alcohols,
that have increased around 18% either by fermentations with FOS or FLS. The described
metabolic shift may be ascribed to the fermentation activity of colonic bacteria, which
are able to transform phenols by the action of Lactobacillaceae and Eubacteriaceae members,
liberating alkenes and producing alcohols [32].

3.2.2. VOCs Related to Prebiotic Activity (preVOCs)

To analyze the main changes in volatile microbial metabolites related to prebiotic po-
tential, we considered the shift (compared to BL) to the different time points of fermentation
of 14 selected VOCs. These VOCs were related to prebiotic activity (preVOCs) and have
renowned bioactivity for the host (SCFAs, MCFAs, BCFAs, Indole, and skatole). The dataset
was made by 48 independent variables (3 time points, two duplicates for FOS, FLS, and
BC) that we have analyzed as follows: (a) every single compound was normalized (mean
centering method) within its dataset, which included cases from different type of samples;
(b) the BL dataset (Table S1) was then subtracted to the end point dataset; (c) post hoc
analysis was done to compare to each other the samples’ productions of a single molecule
(Tukey’s HSD test, p < 0.05). The BC was graphically included but had no differences in
respect to the baseline (SCFAs, BCFAs, and Indole) or no detectability (MCFAs and skatole)
(p > 0.05).
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Short Chain Fatty Acids (SCFAs) are essential compounds for the host, the mucosa,
and the colon microbiota. They contribute to cell homeostasis [33], hormone regulation
in the bloodstream [34], counteraction of opportunistic and pathogenic bacteria [35], and
fostering probiotics and beneficial microbes [9]. From our results, every SCFAs (Figure 2A)
increased either with FOS or FLS at any time points in respect to BL (p < 0.05), while
no increments were recorded with the BC samples in respect to the baseline (p > 0.05).
FLS delivered during fermentation up to 22.2% more SCFAs, e.g., butanoic acid, than the
baseline. Although, FOS had thrice the capacity than FLS in producing SCFAs (5.7-, 3.1-, and
1.8-fold more Acetic, Propanoic, and Butanoic acid, respectively) (p < 0.05). Considering
specific time points (Figure 2B,C), our results showed that the increment in SCFAs was
little at the early and intermediate time points and had its hit at the end point, where 37.6%,
29.7%, and 48.7% higher quantities were recovered for Acetic, Propanoic, and Butanoic
acids, respectively (p < 0.05). In literature, many reports observed that a reduction in SCFAs
content is linked to a reduced eubiosis of the gut microbiota and reduced intestinal cell
homeostasis, either experienced in vivo and in vitro [36]. The prebiotic potential of FLS is,
therefore, mainly derived by the capacity to foster those bacteria able to deconstruct the
fiber and liberate SCFAs in the colon niche, similarly to FOS.

Medium Chain fatty Acids (MCFAs) are unsaturated fatty acids (from C6 to C12) that
have a beneficial effect on the host. For example, MCFAs are active in the protection of
glucose homeostasis during high-fat overfeeding and are effective in conditions of insulin
resistance [37]. MCFAs are produced by colon microbiota during chain elongation of
intermediate fermentation products of fibers [38] or by direct fiber degradation performed
by Bifidobacteriaceae [39]. For example, Enterobacteriaceae and Bacteroides spp. produce
MCFAs from lactate, while Lachnospiraceae from xylose and other pentoses [38]. In respect
to the baseline, any MCFAs (Figure 2D) increased during fermentation with FOS, while
just Pentanoic, Hexanoic, and n-Decanoic acids increased during fermentation with FLS
(p < 0.05). No differences were detected for BC samples in respect to the baseline (p > 0.05).
Generally, FOS produced four-fold more of these three compounds in comparison to FLS.
Anyhow, considering specific time points (Figure 2E,F), the increments scored by FLS
turned significant just at the end point, were accounted for 27.1%, 27.9%, and 19.5% more
abundance of Pentanoic, Hexanoic, and n-Decanoic acids, respectively (p < 0.05). MCFAs
are important metabolic biomarkers of Intestinal Bowel Disease (IBD)-related changes. The
levels of MCFAs significantly decreased in patients with IBD. For example, Hexanoic acid
levels are inversely correlated to disease activity in IBD [40]. So far, a reduction in MCFAs
content should be linked to a dysbiosis of the gut microbiota.

Branched Chain Fatty Acids (BCFAs), such as Propanoic acid, 3-methyl, Butanoic
acid, 3-methyl, and Pentanoic acid, 3-methyl, are derived from microbial colon protein
fermentation and produce NH3, phenol, and sulfate amines that could be stressful for the
host [41]. BCFAs are often used as a biomarker of protein catabolism, with the promoted
target to reduce their concentration and improve health outcomes [42]. Still, little is known
about the impact of BCFAs on host health [43,44]. What is undisputed, however, are the
negative consequences of the pro-inflammatory and cytotoxic compounds yielded from the
sulfur-containing, basic and aromatic amino acids [43,44]. From recipient results, BCFAs
(Figure 3A) overall increased during fermentation with FLS, but not significantly (p > 0.05),
while they were significantly reduced during fermentation with FOS (p < 0.05). No differ-
ences were detected for BC samples in respect to the baseline (p < 0.05). Notwithstanding,
considering single time points (Figure 3B,C), significant reductions of the three BCFAs
were also seen at the end point, specifically, −13.2%, −17.1%, and −11.2% for Propanoic
acid, 3-methyl, Butanoic acid, 3-methyl, and Pentanoic acid, 3-methyl, respectively. Thus,
at the end point, FLS was able to reduce BCFAs, but in comparison to FOS, this reduction
was 3.1-, 3.9-, and 8.9- fold weaker for Propanoic acid, 3-methyl, Butanoic acid, 3-methyl,
and Pentanoic acid, 3-methyl, respectively. The reduction driven by FLS at the end point
could testify that our product is shaping the microbiota, fostering the growth of that core
bacterial groups specialized in the fermentation of fibers, more than that specialized in
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protein fermentation. As this effect happens even when FOS is fermented, we can add
another notch to the prebiotic potential of FLS.

Indole and skatole (1H-Indole, 3-methyl) are two compounds of tryptophan (trp)
catabolism derived from the degradation of the proteinaceous portion of the food or diet.
Besides trp metabolism by the host, resident microbiota can directly utilize trp [45]. Dif-
ferent commensal bacteria catabolize trp using tryptophanase into indoles, and several
different derivatives are formed [46]. Whereas Indole is also suggested to have beneficial
effects like attenuation of inflammation indicators [47], bacterial production (Clostridium
spp. and Escherichia spp.) and its accumulation are toxic for the host because it alters
permeability and homeostasis of the mucosa [11], and once it is metabolized into indoxyl
sulfate in the liver, can lead to chronic kidney disease and vascular diseases [12,46]. Bac-
terial decarboxylation (Bacteroides spp. and Clostridium spp.) of trp produces harmful
skatole that is associated with the production of inflammatory cytokines [11]. From the
results obtained (Figure 3D), in respect to the baseline dataset, the shifts recorded by FOS
and FLS fermentations indicated a different trend. BC produced slight changes for both
compounds in respect to the baseline (p > 0.05). FOS was able to significantly reduce
the quantity of skatole by about 55% (p < 0.05), but no differences were found in Indole
production (p > 0.05). FLS fermentations, instead, did not generate significant changes
in both compounds (p > 0.05) but showed a slight increase in Indole. Notwithstanding,
FLS was able to reduce significantly by 21.3% the production of skatole at the end point
(p < 0.05). Thus, considering this time point (Figure 3E,F), FOS had 3.41-fold more strength
to reduce harmful skatole than FLS. Modulation of trp and protein metabolism may benefit
the gut host, especially when dysbiosis is involved [46]. Like the results obtained with
BCFAs, the prebiotic potential of FLS at the end point may be ascribed to shaping the
microbiota to the advantage of those bacterial groups specialized in fibers, more than in
proteins fermentation.

3.2.3. Volatilome Analysis of Aldehydes, Ketones, Alcohols and Phenolics

Through SPME GC-MS, compounds other than those typically related to prebiotic
activity were investigated. The volatilome was studied on 4 super-normalized datasets of
VOCs sorted for their chemical class, each generated from different numbers of dependent
variables (VOCs) and 40 independent variables (3 time points, two duplicates for FOS,
FLS, BC, and BL). These datasets were submitted to a multivariate approach, including
untargeted PCA and targeted MANOVA. The BC was not included in MANOVA analyses
since it had no significant variances for these molecules (ANOVA p > 0.05).

A PCA of 8 statistically significant aldehydes distributed cases on the plot, separating
fermentation with FOS and FLS from each other and BL (Figure 4A). Principal descriptors
of fermentation with FLS were Butanal, 2-methyl, and 2-Hexanal (p < 0.01), produced at
the end point (24 h) (p < 0.01) (Tables S3 and S4). From our results, the contribution to
aldehydes production from the BC samples remains indiscriminate (p > 0.01). 2-Hexanal
was reported to limit the growth of several intestinal pathogens at a low concentration [48].
It is conceivable that this resulted from the degradation of very-long-chain organic acids [49]
present in FLS. Aldehydes are a result of microbial fermentation and lipid oxidation, as
well as the transformation of ethyl alcohol [50]. Certain aldehydes are health-promoters
because they contribute positively to cell homeostasis and microbiota eubiosis, such as
Indole-3-aldehyde [51], while most are detrimental, being cytotoxic at a low threshold,
such as Acetaldehyde [52].

PCA of 17 statistically significant alcohols distributed cases on the plot, separating
fermentation with FOS and FLS from each other and BL (Figure 4B). From our results, the
contribution to alcohol production from the BC samples remains indiscriminate (p > 0.01),
while the descriptor of fermentation with FOS was mainly Ethyl alcohol (p < 0.01), and
those for FLS were 1-Butanol, 1-Propanol, and 1-Pentanol, mainly produced at the late time
points (p < 0.01) (Tables S3 and S4). Alcohols are essential compounds of the fermentation
of dietary polysaccharides conducted by the colon microbiota [43]. It is reported that
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1-Pentanol is associated with the consumption of old grains and has anti-inflammatory and
prebiotic activity [24].

The PCA of 22 statistically significant ketones distributed cases on the plot, separating
the substrates from each other and from BL (Figure 4C). From our results, the contribution
to ketones production from the BC samples remains indiscriminate (p > 0.01). Descriptors
of fermentation with FOS was principally 2.4-Pentanedione. Descriptors of fermentation
with FLS were: 2-Pentanone, 2-Butanone, and Acetophenone, largely produced at the end
point (p < 0.01) (Tables S3 and S4). During colon fermentation, many ketones are produced.
Considering their bioactivity, some are desirable, such as the ketones bodies [53]; others,
such as acetone, are unwanted because they could be toxic for the host [54]. Acetophenone
deserves attention since it acts as an antimicrobial to different Gram-negative bacteria [55],
and its N-substitute derivates have been proposed as a therapeutic approach in diabetes [56].
In our experimental conditions, it probably derived from the bacterial deconjugation of
polyphenols, where FLS is presumably rich. A bacterial group implied in such action is
Lactobacillales [57], which was increased after FLS.

Considering the remaining VOCs, we have included amines, sulphurates, and pheno-
lics (Figure 4D) and elaborated a PCA of 17 statistically significant VOCs. The distribution
of cases on the plot was made by separating fermentation with FOS and FLS from each
other and BL. Moreover, time-dependent discrimination evidenced that the fermentation
conditions adopted in the MICODE gut model allowed larger speciation of molecules at the
late time points. While the descriptor of fermentation with FOS was mainly 1H-Inden-5-ol,
2,3-dihydro (p < 0.01), that for FLS was Benzenemethanol, 4-(1-methylethyl) (p < 0.01)
(Tables S3 and S4). This latter compound is known as Cuminyl alcohol and is reported to
have anti-oxidant potential [58]. Lastly, even in this situation, the contribution to VOCs pro-
duction from the BC samples remains indiscriminate, except for Phenol, 4-methyl (p < 0.01)
(Tables S3 and S4). Considering Phenol, 4-methyl, it is interesting to mention that it was
not a descriptor of FOS nor FLS fermentation; likely, its content was reduced from the
baseline value. This VOC is associated with cardiovascular diseases and is derived from
excessive proteolytic fermentation of Western diets, mainly due to species of Ruminococcus
and Clostridium [59].

3.2.4. Time-Dependent Discrimination of Alkenes

The dataset of 30 statistically significant alkenes was almost entirely related to FLS
fermentation due to its EO content; thus, no MANOVA was applied. The study was
conducted on 12 dependent variables (no FOS nor BC were included, but was the BL).
Results are discussed just by PCA, which has distributed cases on the plot on a time
basis through robust factors (Figure 5). These alkenes are complex VOCs belonging to
the class of terpenes and terpenoids, with renowned bioactive features. In detail, most
of the compounds were pushing the cases of early and intermediate time points to the I
and IV quadrants, while minor speciation of alkenes limited the cases of the end point on
the middle of the left side quadrants. Besides, the terpenes and terpenoids describing the
early and intermediate samplings majorly were those famous for their strong antimicrobial
activity, e.g., Thymol, beta-Phellandrene, and Thujol [25], while the VOCs describing the
end point cases possess an anti-oxidant nature, e.g., p-Cymene [60], trans-3-(10)-Caren-
2-ol [61], and p-Mentha-1(7),8(10)-dien-9-ol (cis-Carveol) [62]. Lastly, it is interesting to
observe even that 4-acetyl-1-Methylcyclohexene, which is a major compound derived from
D-Limonene oxidation but toxic for host cells [63], was not a descriptor of end point cases,
meaning that it was depleted during fermentation and somehow converted by colonic
bacteria.

3.3. Microbiota Analysis

To study the potential benefits associated with FLS beneficial effects on colon micro-
biota, we considered: (i) the changes of 11 core colon bacterial taxa (ii) the Firmicutes to
Bacteroidetes ratio, as an indicator of eubiosis: (iii) the qPCR Prebiotic Index (qPI) based on
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quantification values of selected bacterial taxa over time of fermentation, in comparison to
FOS and the blank control.

3.3.1. Changes in Selected Fecal Bacterial Populations Measured with qPCR

The Changes in the Eubacteria kingdom, Firmicutes and Bacteroidetes phyla, Lactobacil-
lales order, Bifidobacteriaceae and Enterobacteriaceae families, Clostridium group I and group
IV, and E. coli, F. prausnitzii, and A. muciniphila species were assessed by qPCR (Table 1). At
the early time point (6 h), few significant changes were found among all cases and bacterial
targets (p < 0.05). Eubacteria and Bifidobacteriaceae increased during FOS fermentation,
Lactobacillales increased either with FOS or FLS, Clostridium group I was augmented by any
type of fermentation, but Clostridium group IV was reduced just by FLS (p < 0.05). At the
intermediate time point (18 h), microbiota changes were more consistent with respect to
BL. For example, Lactobacillales increased in number both for FOS and FLS fermentations,
Bifidobacteriaceae just for that of FOS (p < 0.05), Enterobacteriaceae increased just in the control.
Besides, while Clostridium group I loads increased with any fermentation, Clostridium group
IV decreased with FLS (p < 0.05).

Table 1. Absolute quantification by qPCR and SYBR Green I chemistry expressed as means of sextuplicates and S.D. in
Log10 GCN/mL *.

Baseline FOS FLS BC

0 h 6 h 18 h 24 h 6 h 18h 24 h 6 h 18 h 24 h

Eubacteria 8.27 ±
0.22 b

8.61 ±
0.12 a

8.69 ±
0.16 a

8.96 ±
0.17 a

8.29 ±
0.11 b

8.41 ±
0.11 b

8.82 ±
0.12 a

8.36 ±
0.10 b

8.18 ±
0.08 b

8.34 ±
0.07 c

Firmicutes 7.37 ±
0.20 b

7.45 ±
0.07 b

7.84 ±
0.08 b

8.43 ±
0.07 c

7.54 ±
0.13 b

7.56 ±
0.14 b

8.68 ±
0.09 a

7.38 ±
0.02 b

7.35 ±
0.22 b

7.16 ±
0.15 c

Bacteroidetes 6.41 ±
0.18 b

6.61 ±
0.15 b

7.25 ±
0.13 b

8.26 ±
0.07 a

5.91 ±
0.16 b

6.14 ±
0.10 b

7.75 ±
0.18 a

6.22 ±
0.24 b

5.16 ±
0.03 c

4.77 ±
0.11 c

Lactobacillales 6.67 ±
0.13 c

7.27 ±
0.17 b

7.69 ±
0.12 a

8.23 ±
0.12 a

6.98 ±
0.23 b

7.14 ±
0.11 b

8.17 ±
0.14 a

6.55 ±
0.07 c

6.71 ±
0.11 c

6.63 ±
0.08 c

Bifidobacteriaceae 7.21 ±
0.08 b

7.71 ±
0.08 a

7.88 ±
0.04 a

7.96 ±
0.04 a

6.69 ±
0.20 b

6.69 ±
0.12 b

8.11 ±
0.17 a

6.56 ±
0.21 b

6.18 ±
0.04 b

5.20 ±
0.12 c

Enterobacteriaceae 6.77 ±
0.19 bc

6.99 ±
0.21 b

7.09 ±
0.22 b

6.31 ±
0.24 c

7.04 ±
0.07 b

6.98 ±
0.08 b

6.55 ±
0.11 c

7.10 ±
0.28 b

8.10 ±
0.28 a

8.33 ±
0.34 a

Clos group I 2.13 ±
0.29 c

3.48 ±
0.43 b

3.49 ±
0.41 b

2.35 ±
0.13 c

4.28 ±
0.27 b

4.95 ±
0.29 b

4.33 ±
0.23 b

4.20 ±
0.30 b

6.19 ±
0.30 a

6.16 ±
0.51 a

Clos group IV 7.43 ±
0.11 a

7.35 ±
0.18 a

7.33 ±
0.19 a

7.20 ±
0.16 a

6.66 ±
0.23 b

6.34 ±
0.23 b

6.57 ±
0.04 b

7.53 ±
0.19 a

7.38 ±
0.28 a

7.37 ±
0.08 a

E. coli 3.96 ±
0.06 c

4.24 ±
0.05 c

4.05 ±
0.06 c

3.81 ±
003 c

4.30 ±
0.15 c

4.11 ±
0.06 c

4.03 ±
0.05 c

5.08 ±
0.25 b

6.44 ±
0.13 a

6.79 ±
0.09 a

F. prausnitziii 7.53 ±
0.12 b

7.66 ±
0.07 b

8.05 ±
0.12 ab

8.57 ±
0.24 a

7.57 ±
0.25 b

7.13 ±
0.04 b

8.12 ±
0.15 ab

7.07 ±
0.08 bc

6.88 ±
0.05 c

6.49 ±
0.11 c

A. muciniphila 4.19 ±
0.13 b

4.87 ±
0.10 a

4.55 ±
0.18 ab

4.58 ±
0.16 ab

4.15 ±
0.07 b

4.34 ±
0.08 b

4.95 ±
0.05 a

4.53 ±
0.07 ab

3.40 ±
0.03 c

3.20 ±
0.04 c

F/B ** 1.15 ±
0.20 b

1.13 ±
0.11 b

1.08 ±
0.10 b

1.02 ±
0.07 b

1.28 ±
0.14 ab

1.23 ±
0.12 b

1.12 ±
0.14 b

1.19 ±
0.13 a

1.42 ±
0.13 a

1.50 ±
0.12 a

BL = Baseline; FOS = Fructooligosaccharides; FLS = tested fiber; BC = Blank control. * GCN/mL = gene copy number/mL; ** F/B = Firmi-
cutes/Bacteroidetes; a,b,c Different letters within a microbial taxon indicate statistical significance by Tukey’s HSD test (p < 0.05). Primers
pairs are shown in Table S2. Samples were analyzed in triplicate from two independent experiments (n = 6). Clos group I = Clostridium
group I; Clos group IV = Clostridium group IV; E. coli = Escherichia coli; F. prausnitziii = Faecalibacter prausnitzii; A. muciniphila = Akkermansia
muciniphila.
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At the end point (24 h), 25 out of 30 cases scored significant changes in abundance
of any bacterial targets (p < 0.05), including those at the species level that did not record
changes previously. For example, total Eubacteria, Bacteroidetes, Lactobacillales, and Bifidobac-
teriaceae recorded increased numbers with FOS and FLS fermentations. Enterobacteriaceae
were reduced by both FOS and FLS but not significantly for the latter. Clostridium group
I was reduced by FOS, while it was not by FLS; nevertheless, it was almost two Log10
lower than the control (p < 0.05). Considering FOS, the substantial reduction we have
observed in Clostridium group I and the concomitant increment in Clostridium group IV
could be due to allolysis or other antagonistic interactions reported to happen in a closed
environment and on Gram + and/or sporulating bacteria [64–66]. Considering the species
level, E. coli remained at low thresholds with FOS and FLS and surged just in the control
(p < 0.05). F. prausnitzii and A. muciniphila were fostered either by FOS or FLS, but the
former significantly by FOS, while the latter significantly by FLS (p < 0.05). Our results
are comparable to those obtained in literature by similar investigations in similar colon
models [22,23,29], and those of FOS and FLS respect the concept of prebiotics, for which a
compound must foster the growth of beneficial and probiotics bacteria (Bifidobacteriaceae
and Lactobacillales or F. prausnitzii and A. muciniphila), while simultaneously reduce or
contain that of opportunistic and pathogenic (Enterobacteriaceae, E. coli, and Clostridium
group I), relatively to a healthy intestine.

3.3.2. Firmicutes/Bacteroidetes (F/B) over Time

To evidence the prebiotic and eubiotic potential of FLS, it is important to stress the
trend of the ratio Firmicutes/Bacteroidetes (F/B) over time. This ratio indicates an eubiosis
of the microbiota when ranging around and lower than 1.5, and a dysbiosis when more
than 2, leading to intestinal syndromes [30,67]. In this study, at BL, fecal samples recorded
an F/B of around 1.15, indicating the healthy condition of the donors, and this ratio was
similar (p > 0.05) after fermentation either with FOS (1.01) or FLS (1.12), while it was 1.50
when colonic fermentation was conducted with the blank control (p < 0.05). These findings
confirmed the positive role of FLS able to increase Bacteroidetes proportion and limit that of
Firmicutes, other than Lactobacillales.

3.3.3. Prebiotic Index

In this paper, we suggested qPI (qPCR Prebiotic Index) to strengthen the original
Prebiotic Index equation elaborated on 24 h controlled batch culture condition with 1%
w/v addition of prebiotic by Palframan and colleagues almost 20 years ago [28]. qPI was
obtained, normalizing the data and substituting the Bacteroides taxon with that of Enterobac-
teriaceae because, in the former, there are many species that have been recently considered
beneficial (e.g., Bacteroides ovatus) [68,69], while almost all members of Enterobacteriaceae
are generally described as opportunistic and pathogenic. Moreover, the old equation was
made on values obtained by the FISH technique, while we are proposing sextuplicate
values obtained from the qPCR technique.

Considering the results (Figure 6), we found that the best performer was FOS after
18 h of fermentation, and the runner-up was FLS after 24 h of fermentation. In comparison
to FOS 18 h, FLS fermentation scored 1.85- and 2.03-fold lower values, at 6 and 18 h time
points, respectively. Otherwise, this trend was rebalanced by FLS at the end point, which
was just 1.23-fold lower than FOS 18 h. The blank control scored for any time points lower
values than any FOS or FLS case (all significant, but one) and reached the lowest value
of the dataset at the end point (26.24-fold lower than FOS 18 h). So far, the qPI of FLS
tends to reach a high level later than the FOS. Anyhow, even at the earlier time points
qPI of FLS was higher than the blank control. Thus, the comparable prebiotic index of
FLS could be mostly due to its high portion of soluble fiber that accounted almost for
80%. Similarly to FOS, it is known that soluble fibers are excellent substrates to produce
SCFAs in the large intestine [70,71]. Thus, even from the qPI outputs, it has been possible
to see a slower but effective SCFAs production of FLS compared to FOS. This aspect is
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two-faced: a fast microbial turnover and high production of beneficial compounds are
foreseen as an issue for a fiber aspiring prebiotic potential, on the other side, the capacity
to slow microbial metabolism as well as to contribute to a more stable microbial yield and
composition over time could address to FLS other unexpected features, such as longevity
potential. It has been recently described that the well-established Tg2576 mouse model of
Alzheimer’s disease is described by more age-related microbiome changes in comparison
to wild type that are reversible when balanced by certain nutrition regimes [72]. In this
way, FLS, after further research, could have the potential to target specific consumers, such
as the elderly. Lastly, it must be recognized that even if the prolongation of life span is
beyond this study, not recently a critical mass of scientists is arguing over the concept that
a slower metabolism is able to extend life span in Caenorhabditis elegans [73].
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3.4. Microbiota-Metabolites Correlations over the Prebiotic Activity

Spearman Rank Correlations (p < 0.05), two-joining-way Heatmaps, and Pearson
cluster analysis were performed among bacterial taxa and VOCs related to prebiotic
activity by the comparison of two different normalized datasets, each respectively derived
from quantitative datasets of qPCRs and SPME GC-MS (Figures 7 and S2). Only significant
correlations will be discussed. From the Pearson dendrograms on both columns and
rows, two major descriptors of prebiotic potential were identified: (i) those responsible
for beneficial effects and (ii) those for the detrimental. For example, in the first group, in
order of significance, F. prausnitzii, Lactobacillales, Bacteroidetes, Bifidobacteriaceae, Clostridium
group IV, and A. muciniphila had positive correlations to beneficial VOCs (VOCs from C2
to C10) while negative to detrimental VOCs (BCFAs and skatole). In the second group,
Enterobacteriaceae, E. coli, Clostridium group I, and Firmicutes had more intense positive
correlations among detrimental VOCs as well as negative correlations among beneficial
VOCs. The increased abundances in SCFAs and MCFAs in our dataset were correlated
mainly to Lactobacillales and F. prausnitzii, as seen by other authors [38,39]. While the shorter
compounds were even produced by Bacteroidetes, the longer compounds were correlated to
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Bifidobactreiaceae. FLS and FOS were able to foster the growth of those beneficial bacterial
taxa, as well as were able to induce the production of beneficial VOCs. Similar results were
already observed with FOS by several authors [12,21–23,29]. Besides, FLS and FOS were
able to diminish or contain the population of opportunistic Enterobacteriaceae, Clostridium
group I, and E. coli, as well as to reduce the production of skatole and BCFAs.
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Figure 7. Spearman Rank Correlations among VOCs and microbial groups. Clos.IV = Clostridium
group IV; A.muci = Akkermansia muciniphila; Lactob = Lactobacillales; F.prau = Faecalibacterium praus-
nitzii; Bacter = Bacteroidetes; Bifido = Bifidobacteriaceae; Firm = Firmicutes; Clos.I = Clostridium group I;
Enterob = Enterobacteriaceae; E. coli = Escherichia coli; Pro2M = Propanoic acid, 2-methyl; But3M = Bu-
tanoic acid, 3-methyl; Pen3M = Pentanoic acid, 3-methyl; Penta = Pentanoic acid; Buta = Butanoic
acid; Prop = Propanoic acid; Acetic = Acetic acid; n.Deca = n-Decanoic acid; Hexa = Hexanoic acid;
Octa = Octanoic acid; Hepta = Heptanoic acid; Nona = Nonanoic acid. Dendrograms are made by
Pearson analysis with complete linkage. * Significance of correlations by Spearman Rank analysis
(p < 0.05) (p values are reported in Figure S2).

4. Conclusions

During colonic fermentation, SCFAs or MCFAs derive from the degradation of the
fiber components by resident colon microbiota. Their abundances represent good indicators
of the modulatory effect of the fiber on the colon microbiota. Considering our outputs, it
was possible to unveil the prebiotic potential of a new ingredient as FLS which was able to
reproduce, but delayed the prebiotic capacity exerted by FOS.

Generally, this delay makes FLS almost unresponsive for the colon microbiota in the
first 18 h of fermentations. Presumably, the EO terpenes and terpenoids present in FLS
played an antimicrobial activity at the early and intermediate time points of fermentations
implicating a slower production of beneficial or reduction of detrimental compounds.
Interestingly, even if the high terpenic speciation in FLS initially slowed bacterial growth
and generated a sleepy bacterial metabolism, the major toxic compounds derived from
D-Limonene oxidation (4-acetyl-1-methylcyclohexene) was removed by the action of colon
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microbiota. Analogously, microbial changes such as the beneficial reduction of Enterobacte-
riaceae or the containment of Clostridium group I and E. coli were exerted at the end point in
FLS. Even the indicator of eubiosis F/B reached similar baseline values at the end point
after earlier slightly increases. Parallelly, the qPI value of FLS scored the top at the end
point, while that of FOS at the intermediate time point. Although FLS needed a prolonged
time of fermentation, it could be able to reach and even the prebiotic activity of FOS, result-
ing in a very promising novel prebiotic supplement. From a fast microbial turnover and
high production of beneficial compounds is foreseen as a good characteristic of a prebiotic,
but the capacity to slow microbial metabolism as well as to contribute to a more stable
microbial yield and composition over time could be useful for those consumers that are
more susceptible to physiological imbalances. In this way, FLS, after further research, could
have the potential to target specific consumers, such as the elderly.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/foods10102371/s1, Table S1: Baseline values of VOCs related to prebiotic activity in mg/kg,
Table S2: Primers pairs employed for PCR and qPCR reactions and quantifications, Table S3: MANOVA
categorical descriptors for the volatilome, categorized for the type of matrix, Table S4: MANOVA
categorical descriptors for the volatilome, categorized for the time of fermentation, Figure S1: Quan-
tification heatmap of total VOCs, Figure S2: Significance of Spearman rank correlations.

Author Contributions: Conceptualization L.N., M.C.V., E.S., A.G.; Methodology L.N., M.C.V., E.S.,
A.G.; Software L.N., F.C.; Validation L.N., M.C.V., F.C., E.S., A.G.; Formal analysis L.N., M.C.V., F.C.;
Investigation L.N., M.C.V., F.C., E.S., A.G.; Resources M.C.V., E.S., A.G.; Data curation L.N., M.C.V.,
F.C., E.S., A.G.; Writing—original draft preparation L.N., A.G.; Writing—review and editing L.N.,
M.C.V., F.C., E.S., A.G.; Visualization L.N., M.C.V., F.C., E.S., A.G.; Supervision L.N., E.S., A.G.; Project
administration E.S., A.G.; Funding acquisition E.S., A.G. All authors have read and agreed to the
published version of the manuscript.

Funding: “RFO from University of Bologna to ES” and “RFO from University of Bologna to AG”.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
ethics procedures required at the University of Bologna.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: The data presented in this study are available within the article or
Supplementary Materials.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune–metabolic viewpoint for

age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [CrossRef]
2. Zhao, F.; Feng, J.; Li, J.; Zhao, L.; Liu, Y.; Chen, H.; Jin, Y.; Zhu, B.; Wei, Y. Alterations of the gut microbiota in Hashimoto’s

thyroiditis patients. Thyroid 2018, 28, 175–186. [CrossRef]
3. Ishaq, H.M.; Mohammad, I.S.; Shahzad, M.; Ma, C.; Raza, M.A.; Wu, X.; Guo, H.; Shi, P.; Xu, J. Molecular alteration analysis of

human gut microbial composition in Graves’ disease patients. Int. J. Biol. Sci. 2018, 14, 1558. [CrossRef] [PubMed]
4. Cotillard, A.; Kennedy, S.P.; Kong, L.C.; Prifti, E.; Pons, N.; Le Chatelier, E.; Almeida, M.; Quinquis, B.; Levenez, F.; Galleron, N.;

et al. Dietary intervention impact on gut microbial gene richness. Nature 2013, 500, 585–588. [CrossRef] [PubMed]
5. Qin, J.; Li, Y.; Cai, Z.; Li, S.S.; Zhu, J.; Zhang, F.; Liang, S.; Zhang, W.; Guan, Y.; Shen, D.; et al. A metagenome-wide association

study of gut microbiota in type 2 diabetes. Nature 2012, 490, 55–56. [CrossRef] [PubMed]
6. Fang, P.; Kazmi, S.A.; Jameson, K.G.; Hsiao, E.Y. The microbiome as a modifier of neurodegenerative disease risk. Cell Host

Microbe 2020, 28, 201–222. [CrossRef] [PubMed]
7. Jiang, C.; Li, G.; Huang, P.; Liu, Z.; Zhao, B. The gut microbiota and Alzheimer’s disease. J. Alzheimer Dis. 2017, 58, 1–15.

[CrossRef]
8. Ford, A.C.; Moayyedi, P.; Chey, W.D.; Harris, L.A.; Lacy, B.E.; Saito, Y.A.; Quigley, E.M. American College of Gastroenterology

monograph on management of irritable bowel syndrome. Am. J. Gastroenterol. 2018, 113, 1–18. [CrossRef]
9. Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease:

From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [CrossRef] [PubMed]



Foods 2021, 10, 2371 19 of 21

10. Rial, S.A.; Karelis, A.D.; Bergeron, K.F.; Mounier, C. Gut microbiota and metabolic health: The potential beneficial effects of a
medium chain triglyceride diet in obese individuals. Nutrients 2016, 8, 281. [CrossRef]

11. Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 9, 3294. [CrossRef] [PubMed]
12. Wang, X.; Gibson, G.R.; Sailer, M.; Theis, S.; Rastall, R.A. Prebiotics inhibit proteolysis by gut bacteria in a host diet-dependent

manner: A three-stage continuous in vitro gut model experiment. Appl. Environ. Microbiol. 2020, 86, e02730-19. [CrossRef]
[PubMed]

13. Nissen, L.; Casciano, F.; Gianotti, A. Intestinal fermentation in vitro models to study food-induced gut microbiota shift: An
updated review. FEMS Microbiol. Lett. 2020, 367, 12. [CrossRef]

14. Spisni, E.; Petrocelli, G.; Imbesi, V.; Spigarelli, R.; Azzinnari, D.; Donati Sarti, M.; Campieri, M.; Valerii, M.C. Antioxidant,
Anti-Inflammatory, and Microbial-Modulating Activities of Essential Oils: Implications in Colonic Pathophysiology. Int. J. Mol.
Sci. 2020, 21, 4152. [CrossRef] [PubMed]

15. Wang, L.; Zhang, Y.; Fan, G.; Ren, J.N.; Zhang, L.L.; Pan, S.Y. Effects of orange essential oil on intestinal microflora in mice. J. Sci.
Food Agric. 2019, 99, 4019–4028. [CrossRef]

16. Li, D.; Wu, H.; Dou, H. Weight loss effect of sweet orange essential oil microcapsules on obese SD rats induced by high-fat diet.
Biosci. Biotechnol. Biochem. 2019, 83, 923–932. [CrossRef]

17. Santiago, V.A.J.; Jayachitra, J.; Shenbagam, M.; Nalini, N. Dietary D-limonene alleviates insulin resistance and oxidative stress-
induced liver injury in high-fat diet and L-NAME-treated rats. Eur. J. Nutr. 2012, 51, 57–68. [CrossRef]

18. Li, W.; Prakash, R.; Chawla, D.; Du, W.; Didion, S.P.; Filosa, J.A.; Zhang, Q.; Brann, D.W.; Lima, V.V.; Tostes, R.C.; et al. Early
effects of high-fat diet on neurovascular function and focal ischemic brain injury. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2013,
304, R1001–R1008. [CrossRef]

19. Sun, J. D-Limonene: Safety and clinical applications. Altern. Med. Rev. 2007, 12, 259–264.
20. Nissen, L.; Casciano, F.; Chiarello, E.; di Nunzio, M.; Bordoni, A.; Gianotti, A. Colonic In Vitro Model Assessment of the Prebiotic

Potential of Bread Fortified with Polyphenols Rich Olive Fiber. Nutrients 2021, 13, 787. [CrossRef]
21. Gibson, G.; Hutkins, R.; Sanders, M.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani,

P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus
statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [CrossRef] [PubMed]

22. Connolly, M.L.; Tuohy, K.M.; Lovegrove, J.A. Wholegrain oat-based cereals have prebiotic potential and low glycaemic index. Br.
J. Nutr. 2012, 108, 2198–2206. [CrossRef] [PubMed]

23. Koutsos, A.; Lima, M.; Conterno, L.; Gasperotti, M.; Bianchi, M.; Fava, F.; Vrhovsek, U.; Lovegrove, J.A.; Tuohy, K.M. Effects of
Commercial Apple Varieties on Human Gut Microbiota Composition and Metabolic Output Using an In Vitro Colonic Model.
Nutrients 2017, 9, 533. [CrossRef]

24. Taneyo Saa, D.; Turroni, S.; Serrazanetti, D.I.; Rampelli, S.; Maccaferri, S.; Candela, M.; Severgnini, M.; Simonetti, E.; Brigidi,
P.; Gianotti, A. Impact of Kamut® Khorasan on gut microbiota and metabolome in healthy volunteers. Food Res. Int. 2014, 63,
227–232. [CrossRef]

25. Nissen, L.; Demircan, B.; Taneyo-Saa, D.L.; Gianotti, A. Shift of Aromatic Profile in Probiotic Hemp Drink Formulations: A
Metabolomic Approach. Microorganisms 2019, 7, 509. [CrossRef] [PubMed]

26. Tanner, S.A.; Berner, A.Z.; Rigozzi, E.; Grattepanche, F.; Chassard, C.; Lacroix, C. In vitro Continuous Fermentation Model
(PolyFermS) of the Swine Proximal Colon for Simultaneous Testing on the Same Gut Microbiota. PLoS ONE 2014, 9, e94123.
[CrossRef] [PubMed]

27. Nissen, L.; Samaei, S.P.; Babini, E.; Gianotti, A. Gluten free sourdough bread enriched with cricket flour for protein fortification:
Anti-oxidant improvement and Volatilome characterization. Food Chem. 2020, 333, 127410. [CrossRef] [PubMed]

28. Palframan, R.; Gibson, G.R.; Rastall, R.A. Development of a quantitative tool for the comparison of the prebiotic effect of dietary
oligosaccharides. Lett. Appl. Microbiol. 2003, 37, 281–284. [CrossRef]

29. Takagi, R.; Sasaki, K.; Sasaki, D.; Fukuda, I.; Tanaka, K.; Yoshida, K.; Kondo, A.; Osawa, R. A single-batch fermentation system to
simulate human colonic microbiota for high-throughput evaluation of prebiotics. PLoS ONE 2016, 11, e0160533. [CrossRef]

30. Koliada, A.; Syzenko, G.; Moseiko, V.; Budovska, L.; Puchkov, K.; Perederiy, V.; Gavalko, Y.; Dorofeyev, A.; Romanenko, M.;
Tkach, S.; et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC
Microbiol. 2017, 17, 120. [CrossRef]

31. Nissen, L.; Rollini, M.; Picozzi, C.; Musatti, A.; Foschino, R.; Gianotti, A. Yeast-Free Doughs by Zymomonas mobilis: Evaluation of
Technological and Fermentation Performances by Using a Metabolomic Approach. Microorganisms 2020, 8, 792. [CrossRef]

32. Kemperman, R.A.; Gross, G.; Mondot, S.; Possemiers, S.; Marzorati, M.; Van de Wiele, T.; Doré, J.; Vaughan, E.E. Impact of
polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Res. Int. 2013, 53, 659–669. [CrossRef]

33. Sun, M.; Wu, W.; Chen, L.; Yang, W.; Huang, X.; Ma, C.; Chen, F.; Xiao, Y.; Yhao, Y.; Ma, C.; et al. Microbiota-derived short-chain
fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat. Commun. 2018, 9, 3555. [CrossRef]

34. Larraufie, P.; Martin-Gallausiaux, C.; Lapaque, N.; Dore, J.; Gribble, F.M.; Reimann, F.; Blottiere, H.M. SCFAs strongly stimulate
PYY production in human enteroendocrine cells. Sci. Rep. 2018, 8, 1–9. [CrossRef]

35. Lamas, A.; Regal, P.; Vázquez, B.; Cepeda, A.; Franco, C.M. Short Chain Fatty Acids Commonly Produced by Gut Microbiota
Influence Salmonella enterica Motility, Biofilm Formation, and Gene Expression. Antibiotics 2019, 8, 265. [CrossRef] [PubMed]



Foods 2021, 10, 2371 20 of 21

36. Moens, F.; Van den Abbeele, P.; Basit, A.W.; Dodoo, C.; Chatterjee, R.; Smith, B.; Gaisford, S. A four-strain probiotic exerts positive
immunomodulatory effects by enhancing colonic butyrate production in vitro. Int. J. Pharm. 2019, 30, 1–10. [CrossRef]

37. Lundsgaard, A.M.; Fritzen, A.M.; Sjøberg, K.A.; Kleinert, M.; Richter, E.A.; Kiens, B. Small Amounts of Dietary Medium-Chain
Fatty Acids Protect Against Insulin Resistance During Caloric Excess in Humans. Diabetes 2021, 70, 91–98. [CrossRef]

38. Scarborough, M.J.; Myers, K.S.; Donohue, T.J.; Noguera, D.R. Medium-Chain Fatty Acid Synthesis by “Candidatus Weimeria bifida”
gen. nov., sp. nov., and “Candidatus Pseudoramibacter fermentans” sp. nov. Appl. Environ. Microbiol. 2020, 86, e02242-e19. [CrossRef]
[PubMed]

39. Rivière, A.; Selak, M.; Geirnaert, A.; Van den Abbeele, P.; De Vuyst, L. Complementary mechanisms for degradation of inulin-type
fructans and arabinoxylan oligosaccharides among bifidobacterial strains suggest bacterial cooperation. Appl. Environ. Microbiol.
2018, 84, e02893-17. [CrossRef]

40. De Preter, V.; Machiels, K.; Joossens, M.; Arijs, I.; Matthys, C.; Vermeire, S.; Rutgeerts, P.; Verbeke, K. Faecal metabolite profiling
identifies medium-chain fatty acids as discriminating compounds in IBD. Gut 2015, 64, 447–458. [CrossRef]

41. Aguirre, M.; Venema, K. Challenges in simulating the human gut for understanding the role of the microbiota in obesity. Benef.
Microbes 2016, 8, 31–53. [CrossRef] [PubMed]

42. Yao, C.K.; Muir, J.G.; Gibson, P.R. Review article: Insights into colonic protein fermentation, its modulation and potential health
implications. Aliment Pharmacol. Ther. 2016, 43, 181–196. [CrossRef]

43. Oliphant, K.; Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and
their impact on host health. Microbiome 2019, 7, 1–15. [CrossRef] [PubMed]

44. Solon-Biet, S.M.; Cogger, V.C.; Pulpitel, T.; Wahl, D.; Clark, X.; Bagley, E.E.; Gregoriou, G.C.; Senior, A.M.; Wang, Q.-P.; Brandon,
A.E.; et al. Branched-chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control. Nat.
Metab. 2019, 1, 532–545. [CrossRef]

45. Agus, A.; Planchais, J.; Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe
2018, 23, 716–724. [CrossRef] [PubMed]

46. Hendrikx, T.; Schnabl, B. Indoles: Metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J.
Intern. Med. 2019, 286, 32–40. [CrossRef]

47. Bansal, T.; Alaniz, R.C.; Wood, T.K.; Jayaraman, A. The bacterial signal indole increases epithelial-cell tight-junction resistance
and attenuates indicators of inflammation. Proc. Natl. Acad. Sci. USA 2010, 107, 228–233. [CrossRef]

48. Cho, M.J.; Buescher, R.W.; Johnson, M.; Janes, M. Inactivation of Pathogenic Bacteria by Cucumber Volatiles (E,Z)-2,6-Nonadienal
and (E)-2-Nonenal. J. Food Prot. 2004, 67, 1014–1016. [CrossRef] [PubMed]

49. Mitro, S.; Gordon, A.R.; Olsson, M.J.; Lundström, J.N. The Smell of Age: Perception and Discrimination of Body Odors of
Different Ages. PLoS ONE 2012, 7, e38110. [CrossRef]

50. Malaguarnera, G.; Giordano, M.; Nunnari, G.; Bertino, G.; Malaguarnera, M. Gut microbiota in alcoholic liver disease: Patho-
genetic role and therapeutic perspectives. World J. Gastroenterol. 2014, 20, 16639–16648. [CrossRef]

51. Alexeev, E.E.; Lanis, J.M.; Kao, D.J.; Campbell, E.L.; Kelly, C.J.; Battista, K.D.; Gerich, M.E.; Jenkins, B.R.; Walk, S.T.; Kominsky,
D.J.; et al. Microbiota-Derived Indole Metabolites Promote Human and Murine Intestinal Homeostasis through Regulation of
Interleukin-10 Receptor. Am. J. Pathol. 2018, 188, 1183–1194. [CrossRef] [PubMed]

52. Na, H.-K.; Lee, J.Y. Molecular Basis of Alcohol-Related Gastric and Colon Cancer. Int. J. Mol. Sci. 2017, 18, 1116. [CrossRef]
[PubMed]

53. Cabrera-Mulero, A.; Tinahones, A.; Bandera, B.; Moreno-Indias, I.; Macías-González, M.; Tinahones, F.J. Keto microbiota: A
powerful contributor to host disease recovery. Rev. Endocr. Metab. Disord. 2019, 20, 415–425. [CrossRef]

54. Bradberry, S. Acetone. Medicine 2007, 35, 581. [CrossRef]
55. Tran, T.D.; Olsson, M.A.; McMillan, D.J.; Cullen, J.K.; Parsons, P.G.; Reddell, P.W.; Ogbourne, S.M. Potent Antibacterial Prenylated

Acetophenones from the Australian Endemic Plant Acronychia crassipetala. Antibiotics 2020, 9, 487. [CrossRef]
56. Taslimi, P.; Sujayev, A.; Karaman, M.; Maharramova, G.; Sadeghian, N.; Osmanova, S.; Sardarova, S.; Majdi, N.; Ozel, H.U.;

Gulcin, I. N-Substituted pyrimidinethione and acetophenone derivatives as a new therapeutic approach in diabetes. Arch. Pharm.
2020, 353, e2000075. [CrossRef]

57. Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and
implications in human health. J. Nutr. Biochem. 2013, 24, 1415–1422. [CrossRef] [PubMed]

58. Tamta, A.; Prakash, O.; Punetha, H.; Pant, A.K. Chemical composition and in vitro anti-oxidant potential of essential oil and
rhizome extract of Curcuma amada Roxb. Cogent Chem. 2016, 2, 1168067. [CrossRef]

59. Mei, J.; Du, H.; Xu, Y. Structural and metabolic performance of p-cresol producing microbiota in different carbon sources. Food
Res. Int. 2020, 132, 109049. [CrossRef]

60. Marchese, A.; Arciola, C.R.; Barbieri, R.; Silva, A.S.; Nabavi, S.F.; Tsetegho Sokeng, A.J.; Izadi, M.; Jafari, N.J.; Suntar, I.; Daglia, M.;
et al. Update on Monoterpenes as Antimicrobial Agents: A Particular Focus on p-Cymene. Materials 2017, 10, 947. [CrossRef]

61. Mehmood, T.; Afzal, A.; Anwar, F.; Iqbal, M.; Afzal, M.; Qadir, R. Variations in the Composition, Antibacterial and Haemolytic
Activities of Peel Essential Oils from Unripe and Ripened Citrus limon (L.) Osbeck Fruit. J. Essent. Oil-Bear. Plants 2019, 22,
159–168. [CrossRef]



Foods 2021, 10, 2371 21 of 21

62. Hritcu, L.; Boiangiu, R.S.; Castro de Morais, M.; Pergentino de Sousa, D. (−)-cis-Carveol, a Natural Compound, Improves
β-Amyloid Peptide 1-42-Induced Memory Impairment and Oxidative Stress in the Rat Hippocampus. BioMed Res. Int. 2020, 2020,
8082560. [CrossRef]

63. Lipsa, D.; Barrero-Moreno, J.; Coelhan, M. Exposure to selected Limonene oxidation products: 4-OPA, IPOH, 4-AMCH induces
oxidative stress and inflammation in human lung epithelial cell lines. Chemosphere 2018, 191, 937–945. [CrossRef] [PubMed]

64. Prozorov, A.A.; Danilenko, V.N. Allolysis in bacteria. Microbiology 2011, 80, 1–9. [CrossRef]
65. Claverys, J.P.; Håvarstein, L. Cannibalism and fratricide: Mechanisms and raisons d’être. Nat. Rev. Microbiol. 2007, 5, 219–229.

[CrossRef] [PubMed]
66. Rosenberg, G.; Steinberg, N.; Oppenheimer-Shaanan, Y.; Olender, T.; Doron, S.; Ben-Ari, J.; Sirota-Madi, A.; Bloom-Ackermann,

Z.; Kolodkin-Gal, I. Not so simple, not so subtle: The interspecies competition between Bacillus simplex and Bacillus subtilis and its
impact on the evolution of biofilms. NPJ Biofilms Microbiomes 2016, 2, 15027. [CrossRef]

67. Zhou, S.; Wang, Y.; Jacoby, J.J.; Jiang, Y.; Zhang, Y.; Yu, L.L. Effects of Medium- and Long-Chain Triacylglycerols on Lipid
Metabolism and Gut Microbiota Composition in C57BL/6J Mice. J. Agric. Food Chem. 2017, 65, 6599–6607. [CrossRef] [PubMed]

68. Oba, S.; Sunagawa, T.; Tanihiro, R.; Awashima, K.; Sugiyama, H.; Odani, T.; Nakamura, Y.; Kondo, A.; Sasaki, D.; Sasaki, K.
Prebiotic effects of yeast mannan, which selectively promotes Bacteroides thetaiotaomicron and Bacteroides ovatus in a human colonic
microbiota model. Sci. Rep. 2020, 10, 1–11. [CrossRef]

69. Despres, J.; Forano, E.; Lepercq, P.; Comtet-Marre, S.; Jubelin, G.; Yeoman, C.J.; Berg Miller, M.E.; Fields, C.J.; Terrapon, N.; Le
Bourvellec, C.; et al. Unraveling the pectinolytic function of Bacteroides xylanisolvens using a RNA-seq approach and mutagenesis.
BMC Genom. 2016, 17, 147. [CrossRef] [PubMed]

70. Bengmark, S.; Martindale, R. Prebiotics and Synbiotics in Clinical Medicine. Nutr. Clin. Pract. 2005, 20, 244–261. [CrossRef]
71. Slavin, J. Fiber and Prebiotics: Mechanisms and Health Benefits. Nutrients 2013, 5, 1417–1435. [CrossRef] [PubMed]
72. Cox, L.M.; Schafer, M.J.; Sohn, J.; Vincentini, J.; Weiner, H.L.; Ginsberg, S.D.; Blaser, M.J. Calorie restriction slows age-related

microbiota changes in an Alzheimer’s disease model in female mice. Sci. Rep. 2019, 9, 1–14. [CrossRef] [PubMed]
73. Van Raamsdonk, J.M.; Meng, Y.; Camp, D.; Yang, W.; Jia, X.; Bénard, C.; Hekimi, S. Decreased Energy Metabolism Extends Life

Span in Caenorhabditis elegans Without Reducing Oxidative Damage. Genetics 2010, 185, 559–571. [CrossRef] [PubMed]


	Introduction 
	Materials and Methods 
	Composition of FLS 
	Fecal Donors 
	Materials 
	Fecal Batch-Culture Fermentation and Samples Collection 
	Pipeline of Experimental Activities 
	Volatilome Analyses by Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry (SPME-GC-MS) 
	Enumeration of Bacterial Groups with Quantitative Polymerase Chain Reaction (qPCR) 
	Prebiotic Index 
	Data Processing and Statistical Analysis 

	Results and Discussion 
	Quality Controls for the Validation of MICODE 
	Volatilome Analysis through SPME GC-MS 
	Changes of Summarized Chemical Classes of VOCs 
	VOCs Related to Prebiotic Activity (preVOCs) 
	Volatilome Analysis of Aldehydes, Ketones, Alcohols and Phenolics 
	Time-Dependent Discrimination of Alkenes 

	Microbiota Analysis 
	Changes in Selected Fecal Bacterial Populations Measured with qPCR 
	Firmicutes/Bacteroidetes (F/B) over Time 
	Prebiotic Index 

	Microbiota-Metabolites Correlations over the Prebiotic Activity 

	Conclusions 
	References

